Matematyka w deep learningu - Kneusel Ronald T. - książka

Matematyka w deep learningu książka papierowa

Kneusel Ronald T.

0,0

Dostawa: od 6,99 zł (darmowa dostawa z abonamentem Legimi)

Czas wysyłki: 1-2 dni robocze + czas dostawy

Uwaga: zamówienia na książki papierowe będą realizowane od 2 stycznia 2025 r. Za utrudnienia przepraszamy.

89,00 zł
od 44,50 zł w Klubie Mola Książkowego

-50%
Zbieraj punkty w Klubie Mola Książkowego i kupuj ebooki, audiobooki oraz książki papierowe do 50% taniej.
Dowiedz się więcej.
  • Wydawca: Helion
  • Język: polski
  • Rok wydania: 2024
Opis

Uczenie maszynowe niesie ze sobą obietnicę niezwykłych wynalazków: od samochodów autonomicznych po systemy medyczne diagnozujące choroby lepiej niż doświadczeni lekarze, ale także daje pole do rozwijania dziesiątków innych mniej lub bardziej niepokojących innowacji. Dziś do budowania systemów uczenia maszynowego można posłużyć się wygodnymi frameworkami, jednak rzeczywiste zrozumienie uczenia głębokiego wymaga znajomości kilku koncepcji matematycznych.
Koncepcje te zostały przystępnie wyjaśnione właśnie w tej książce. W szczególności zapoznasz się z praktycznymi aspektami probabilistyki, statystyki, algebry liniowej i rachunku różniczkowego. Prezentacji tych zagadnień towarzyszą fragmenty kodu w Pythonie i praktyczne przykłady zastosowań w uczeniu głębokim. Rozpoczniesz od zapoznania się z podstawami, takimi jak twierdzenie Bayesa, a następnie przejdziesz do bardziej zaawansowanych zagadnień, w tym uczenia sieci neuronowych przy użyciu wektorów, macierzy i pochodnych. Dwa ostatnie rozdziały dadzą Ci szansę użycia nowej wiedzy do zaimplementowania propagacji wstecznej i metody gradientu prostego - dwóch podstawowych algorytmów napędzających rozwój sztucznej inteligencji.
W książce między innymi:
* zastosowanie statystyki do zrozumienia danych i oceny modeli
* prawidłowe korzystanie z reguł prawdopodobieństwa
* użycie wektorów i macierzy do przesyłania danych w sieciach neuronowych
* algebra liniowa w analizie głównych składowych i rozkładu według wartości osobliwych
* gradientowe metody optymalizacji, takie jak RMSprop, Adagrad i Adadelta
Chcesz zrozumieć sieci neuronowe? Odpowiedzi szukaj w matematyce!

Liczba stron: 344

Tłumacz: Filip Kamiński

Format (wymiary): 16.5x23.0cm

ISBN: 9788328910164

Oceny
0,0
0
0
0
0
0
Więcej informacji
Więcej informacji
Legimi nie weryfikuje, czy opinie pochodzą od konsumentów, którzy nabyli lub czytali/słuchali daną pozycję, ale usuwa fałszywe opinie, jeśli je wykryje.